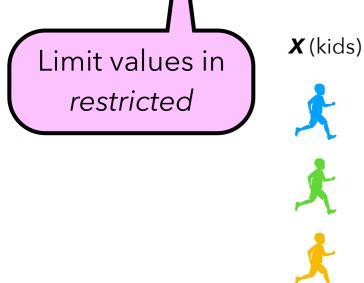
A Tale of Santa Claus, Hypergraphs and Matroids

Sami Davies, Thomas Rothvoss, Yihao Zhang

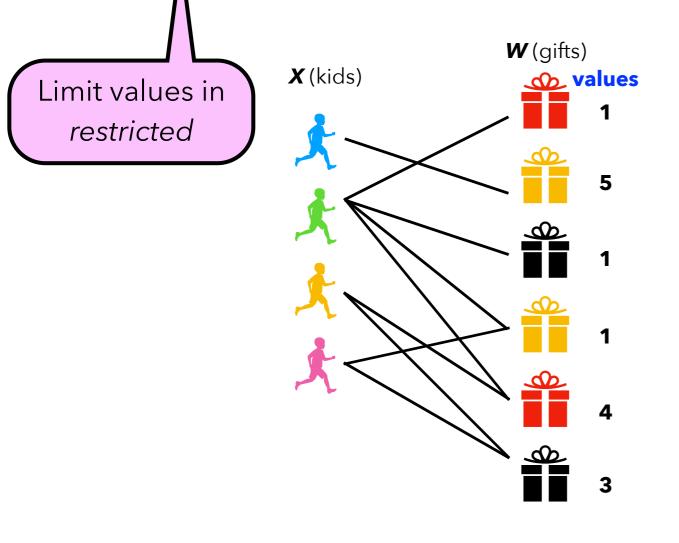
For W a set of **gifts**, X a set of **children**, where child *i* has value p_{ij} in $\{0, p_j\}$ for gift *j*, find assignment $\sigma : W \to X$ maximizing $\min_{i \in X} \sum_{j \in \sigma^{-1}(i)} p_{ij}$

Limit values in restricted

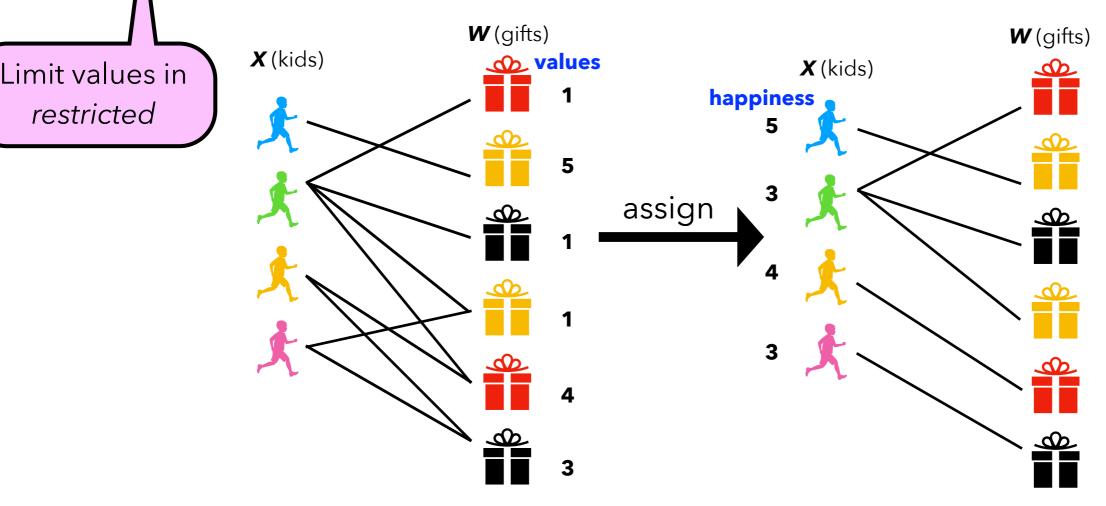
For W a set of **gifts**, X a set of **children**, where child *i* has value p_{ij} in $\{0, p_j\}$ for gift *j*, find assignment $\sigma : W \to X$ maximizing $\min_{i \in X} \sum_{j \in \sigma^{-1}(i)} p_{ij}$



For W a set of **gifts**, X a set of **children**, where child *i* has value p_{ij} in $\{0, p_j\}$ for gift *j*, find assignment $\sigma : W \to X$ maximizing $\min_{i \in X} \sum_{j \in \sigma^{-1}(i)} p_{ij}$



For W a set of **gifts**, X a set of **children**, where child *i* has value p_{ij} in $\{0, p_j\}$ for gift *j*, find assignment $\sigma : W \to X$ maximizing $\min_{i \in X} \sum_{j \in \sigma^{-1}(i)} p_{ij}$



"Dual" to classic jobs-machines scheduling

Prior Work on Santa Claus

[Bezakova, Dani '05] NP-hard to approximate Santa Claus within factor <2

[Annamalai, Kalaitzis, Svensson '15]

12.3-approx. algorithm use existence of a solution of a configuration LP (CLP)

[Cheng, Mao '19] CLP has integrality gap between 2 and 3.808

 $\mathscr{C}(i,T)$ = sets of gifts giving child *i* value at least *T*. Exponentially many variables.

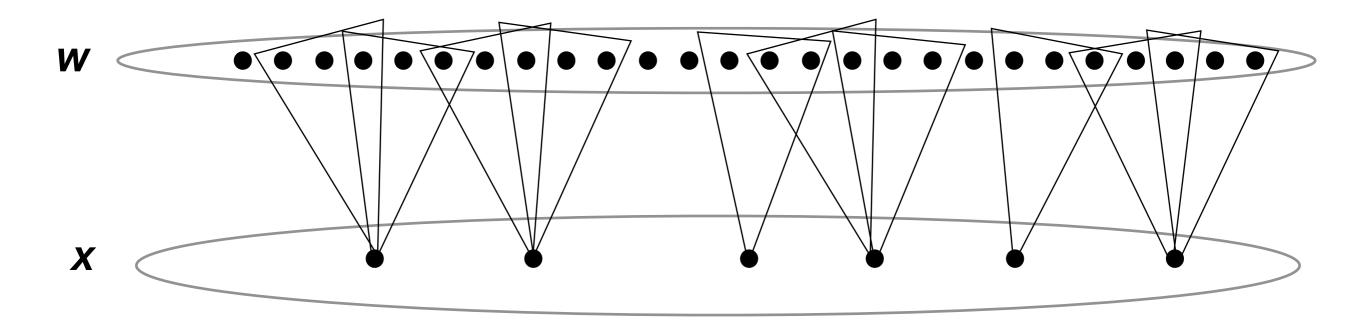
$$\sum_{C \in \mathscr{C}(i,T)} z_{i,C} = 1 \qquad \forall i \in X$$
$$\sum_{C:j \in C} \sum_{i} z_{i,C} \leq 1 \qquad \forall j \in W$$
$$z \geq 0.$$

^ sol'n can be approx using the ellipsoid method

Reframe allocation problems as bipartite hypergraph matching problems

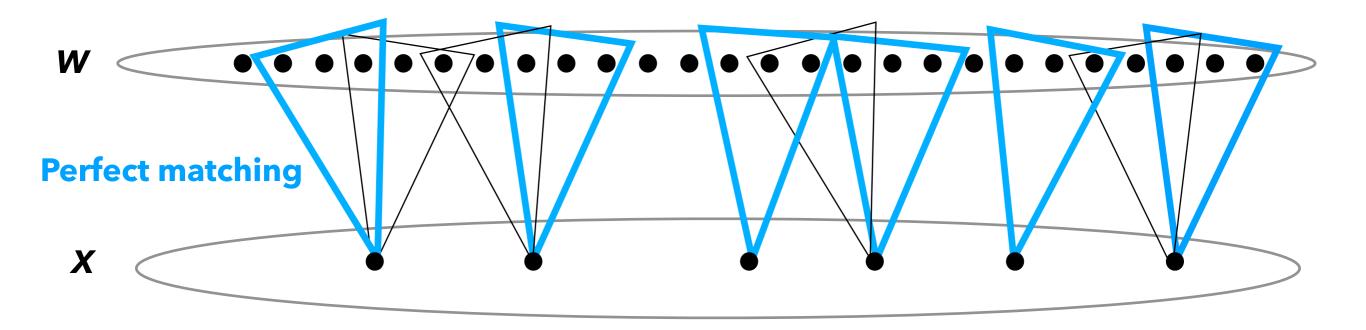
A hypergraph $\mathscr{H} = (X \cup W, \mathscr{E})$ is **bipartite** if for all e in \mathscr{E} , $|e \cap X| = 1$.

Hyperedges $F \subseteq \mathscr{E}$ form a **X-perfect matching** if disjoint and every node in X is contained in exactly one edge in F.

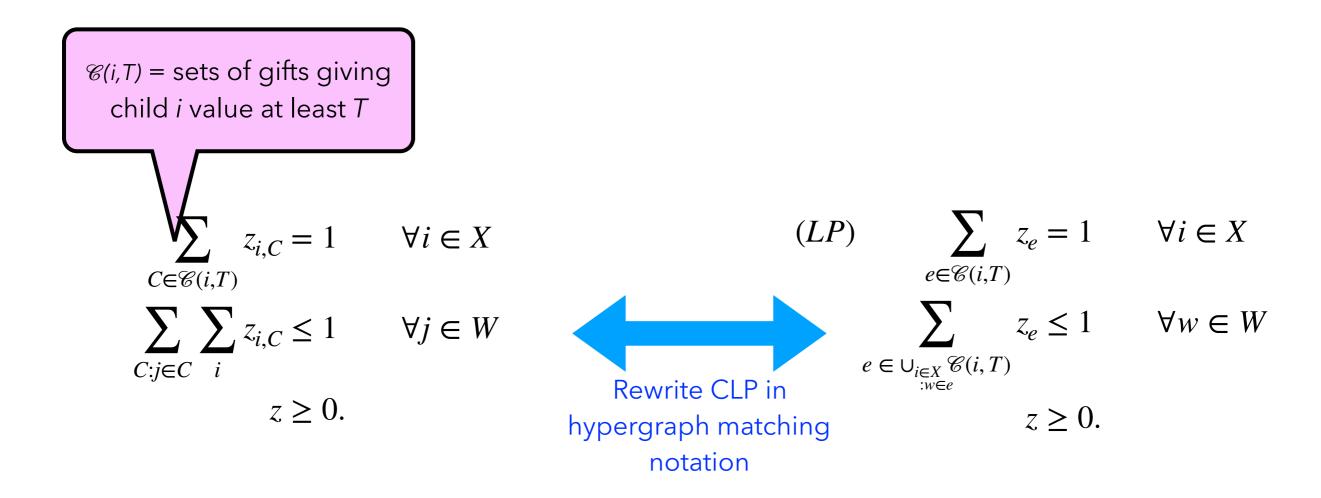


A hypergraph $\mathscr{H} = (X \cup W, \mathscr{E})$ is **bipartite** if for all e in \mathscr{E} , $|e \cap X| = 1$.

Hyperedges $F \subseteq \mathscr{E}$ form a **X-perfect matching** if disjoint and every node in X is contained in exactly one edge in F.



CLP solution = fractional X-perfect matching on $(X \cup W, \cup_{i \in X} \mathscr{C}(i, T))$.



Say restricting instance to have extra structure.

Hypergraph Matchin

Finding perfect matchings in bipartite hypergraphs is in-naro. When do there exist perfect matchings? When, and how, can we find them efficiently?

[Haxell '95] Let $\mathscr{H} = (X \cup W, \mathscr{E})$ be a bipartite hypergraph with $|e| \le r$ for all e in \mathscr{E} . Then either \mathscr{H} contains a X-perfect matching or there are subsets X' $\subset X$ and W' $\subset W$ so that all hyperedges incident to X' intersect W' and $|W'| \le (2r - 3)(|X'| - 1)$. Generalization of augmenting paths in bipartite graphs

[Annamalai '15, Annamalai, Kalaitzis, Svensson '15] Use augmenting tree to make Haxell's argument polynomial (with some slack) and obtain 12.3 approx. for Santa Claus.

[Davies, Rothvoss, Zhang '18] When X forms a **matroid**, use augmenting tree to find hypergraph matching on some basis of the matroid.

Our Main Result for Santa Claus

Our Main Result for Santa Claus

The Santa Claus problem admits a $(4+\varepsilon)$ approximation algorithm in time $n^{\Theta_{\varepsilon}(1)}$

When gift values are "well-separated", can approach a 3-approx

Contribution Our Main Result for Santa Claus

We exploit an underlying matroid to design a simple, new framework for scheduling problems.

- Introduce a more general problem, Matroid Max-Min Allocation
- Use an LP with $O(n^2)$ variables and constraints (simpler than CLP)
- Best approximation for Santa Claus (concurrent with Cheng, Mao '19)

Matroids

Matroids

Matroid $\mathcal{M} = (X, \mathcal{I})$ generalizes linear independence in vector spaces Independent sets \mathcal{I} satisfy:

• Nonemptyness: \emptyset in \mathcal{I}

X = ground set, $\mathcal{I} \subset 2^X$

- Monotonicity: for all $A' \subseteq A$ with A in \mathcal{I} , A' in \mathcal{I}
- Exchange property: for A, B in \mathcal{I} with |A| < |B|, there exists x in $B \setminus A$ such that $A \bigcup x$ in \mathcal{I}

Bases of a matroid: $\mathcal{B}(\mathcal{M})$, set of maximal independent sets

Base polytope: $P_{\mathcal{B}(\mathcal{M})} = conv\{\chi(S) \in \{0,1\}^X : S \text{ is a basis of } \mathcal{M}\}$

Reduce to a general problem we call Matroid Max-Min Allocation

Reduce to a general problem we call Matroid Max-Min Allocation

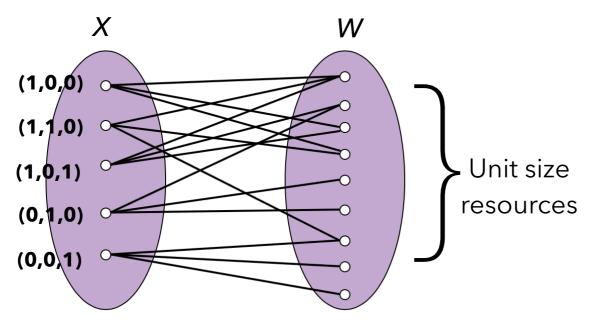
Setting matroid $\mathcal{M} = (X, \mathcal{I})$, bipartite graph $G = (X \cup W, E)$, resources W to distribute to X, values $p_j \ge 0$ for resource j in W

Goal find basis $S \in \mathcal{B}(\mathcal{M})$ and assignment $\sigma : W \to S$ with $(\sigma(i), j)$ in E maximizing over all $S \min_{i \in S} \sum_{j \in \sigma^{-1}(i)} p_j$

Reduce to a general problem we call Matroid Max-Min Allocation

Setting matroid $\mathcal{M} = (X, \mathcal{I})$, bipartite graph $G = (X \cup W, E)$, resources W to distribute to X, values $p_j \ge 0$ for resource j in W

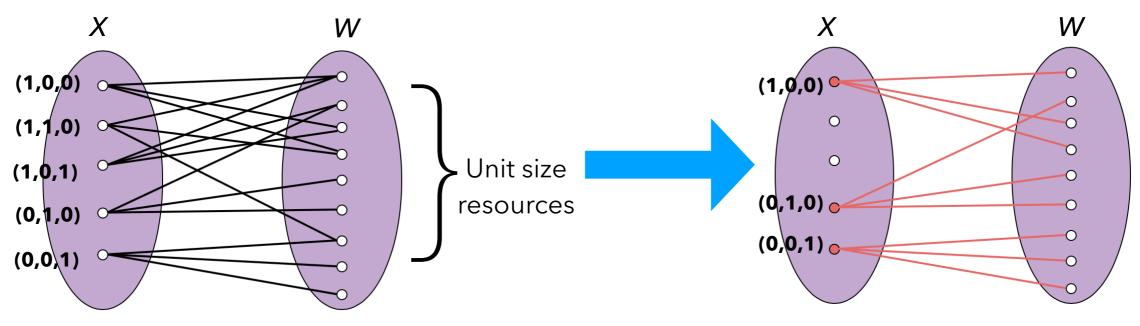
Goal find basis $S \in \mathcal{B}(\mathcal{M})$ and assignment $\sigma : W \to S$ with $(\sigma(i), j)$ in E maximizing over all $S \min_{i \in S} \sum_{j \in \sigma^{-1}(i)} p_j$



Reduce to a general problem we call Matroid Max-Min Allocation

Setting matroid $\mathcal{M} = (X, \mathcal{I})$, bipartite graph $G = (X \cup W, E)$ resources W to distribute to X, values $p_j \ge 0$ for resource j in W

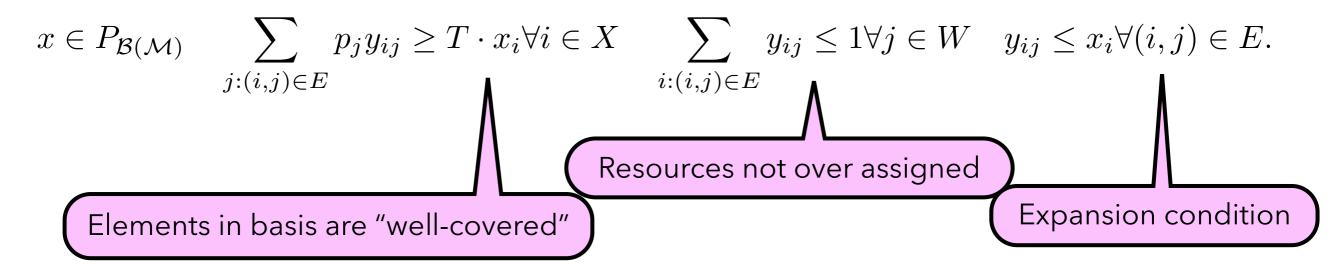
Goal find basis $S \in \mathcal{B}(\mathcal{M})$ and assignment $\sigma : W \to S$ with $(\sigma(i), j)$ in E maximizing over all S min $\sum_{i \in \sigma^{-1}(i)} p_j$



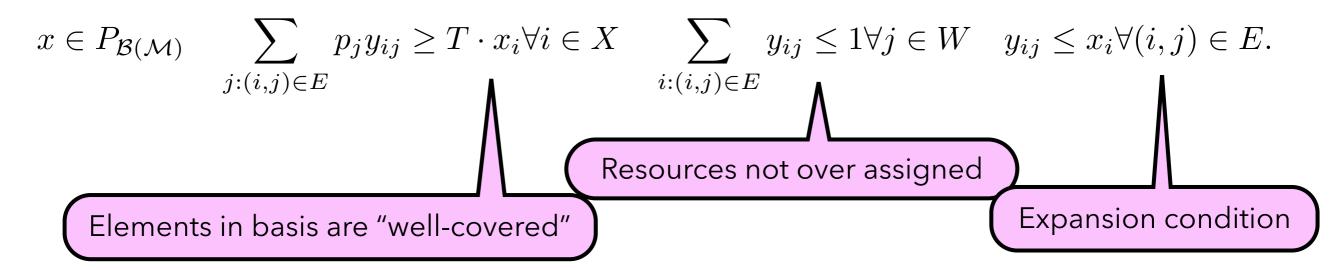
For target objective value $T \ge 0$, the LP Q(T) is the set of vectors satisfying: $(x, y) \in \mathbb{R}_{\ge 0}^X \times \mathbb{R}_{\ge 0}^E$

$$x \in P_{\mathcal{B}(\mathcal{M})} \quad \sum_{j:(i,j)\in E} p_j y_{ij} \ge T \cdot x_i \forall i \in X \quad \sum_{i:(i,j)\in E} y_{ij} \le 1 \forall j \in W \quad y_{ij} \le x_i \forall (i,j) \in E.$$

For target objective value $T \ge 0$, the LP Q(T) is the set of vectors satisfying: $(x, y) \in \mathbb{R}^X_{\ge 0} \times \mathbb{R}^E_{\ge 0}$



For target objective value $T \ge 0$, the LP Q(T) is the set of vectors satisfying: $(x, y) \in \mathbb{R}_{\ge 0}^X \times \mathbb{R}_{\ge 0}^E$



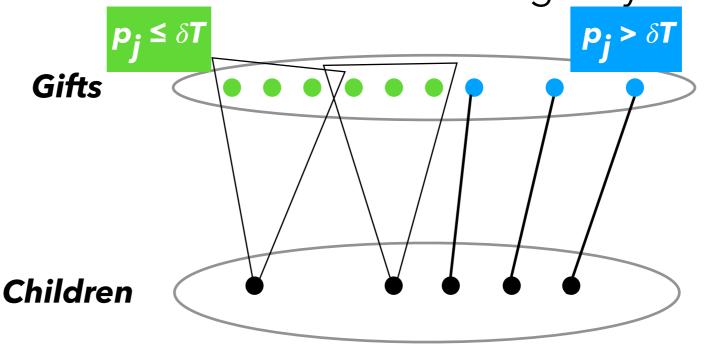
Main technical result: Suppose $Q(T) \neq \emptyset$. Then one can find (x,y) in $Q((\frac{1}{3}-\varepsilon)T - \frac{1}{3} \max p_j)$ with x and y integral in time $n^{\Theta_{\varepsilon}(1)}$.

Fix $\delta > 0$. Label gift *j* large if $p_j > \delta T$, small if $p_j \le \delta T$

Let $\mathcal{I} = \{A \subseteq \text{children s.t } \exists \text{ matching between } A \text{ and large gifts} \}$. (children, \mathcal{I}) forms a **matchable set matroid**, \mathcal{M} .

 $\mathcal{M}^* = (\text{children}, \mathcal{I}^*) \text{ is the$ **co-matroid** $for <math>\mathcal{I}^* = \{A \subseteq \text{children s.t } \exists B \text{ in } \mathcal{B}(\mathcal{M}) \text{ with } A \cap B = \emptyset \}$

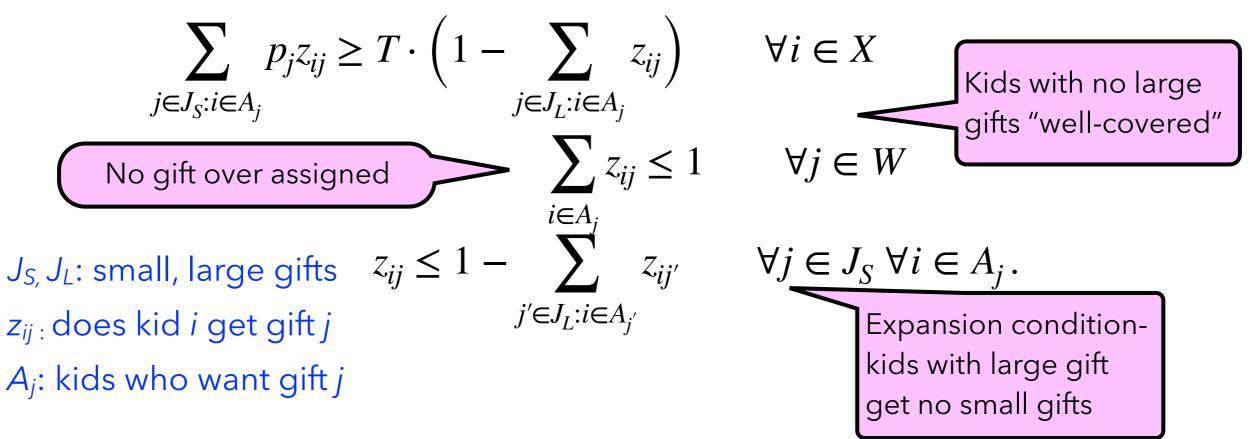
Bases of co-matroid are sets of children receiving only small gifts



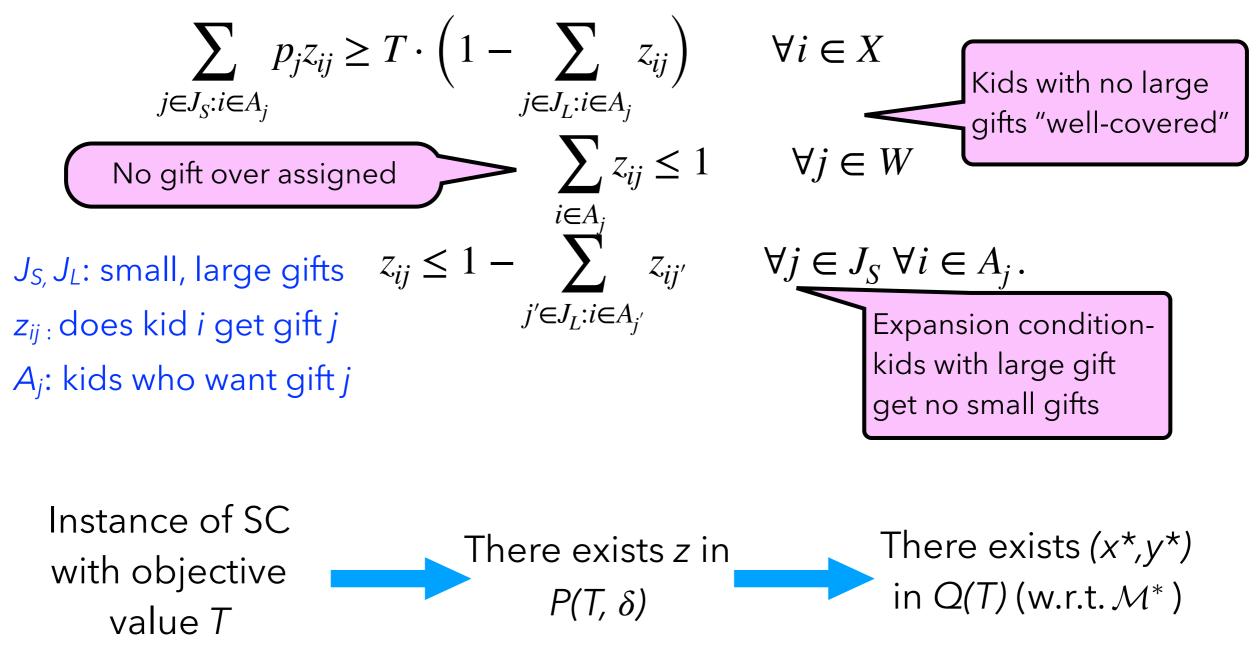
 $T = \text{opt value. Relaxation } P(T, \delta)$ - vectors $z \in \mathbb{R}^{M \times J}$ satisfying:

J_S, J_L: small, large gifts z_{ij :} does kid *i* get gift *j* A_j: kids who want gift *j*

 $T = \text{opt value. Relaxation } P(T, \delta)$ - vectors $z \in \mathbb{R}^{M \times J}$ satisfying:



 $T = \text{opt value. Relaxation } P(T, \delta)$ - vectors $z \in \mathbb{R}^{M \times J}$ satisfying:



Santa Claus and Matroid Max-Min Allocation Instance of SC with objective value T There exists z in $P(T, \delta)$ There exists (x*,y*) in Q(T) (w.r.t. \mathcal{M}^*)

Main technical result: Suppose $Q(T) \neq \emptyset$. Then one can find (x,y) in $Q((\frac{1}{3}-\varepsilon)T - \frac{1}{3} \max p_w)$ with x and y integral in poly time

From main technical result: Find children receiving only small gifts and their gift assignments: their happiness $\geq (\frac{1}{3}-\frac{\delta}{3}-\varepsilon)T$

Remaining children receive a large gift: their happiness $\geq \delta T$ Children receive happiness $\geq \min \left\{ \left(\frac{1}{3} - \delta/3 - \varepsilon \right) T, \delta T \right\}$, set $\delta = 1/4$: The Santa Claus problem admits a $(4+\varepsilon)$ -approximation algorithm in time $n^{\Theta_{\varepsilon}(1)}$.

Q(T):

$x \in P_{\mathcal{B}(\mathcal{M})} \quad \sum_{j:(i,j)\in E} p_j y_{ij} \ge T \cdot x_i \forall i \in X \quad \sum_{i:(i,j)\in E} y_{ij} \le 1 \forall j \in W \quad y_{ij} \le x_i \forall (i,j) \in E.$

Main technical result: Suppose $Q(T) \neq \emptyset$. Then one can find (x,y) in $Q((\frac{1}{3}-\varepsilon)T - \frac{1}{3} \max p_w)$ with x and y integral in time $n^{\Theta_{\varepsilon}(1)}$.

Q(T):

 $x \in P_{\mathcal{B}(\mathcal{M})}$

$$\sum_{j:(i,j)\in E} p_j y_{ij} \ge T \cdot x_i \forall i \in X \quad \sum_{i:(i,j)\in E} y_{ij} \le 1 \forall j \in W \quad y_{ij} \le x_i \forall (i,j) \in E.$$

Main technical result: Suppose $Q(T) \neq \emptyset$. Then one can find (x,y) in $Q((\frac{1}{3}-\varepsilon)T - \frac{1}{3} \max p_w)$ with x and y integral in time $n^{\Theta_{\varepsilon}(1)}$.

Language change: *hyperedges* in a bipartite *hypergraph*

 \mathcal{E}_t : minimal bipartite hyperedges e with $val(e) \ge t$

val(e)= sum of values of resources in *e*

Hypergraph $H=(X \cup W, \mathcal{E})$ is bipartite if for all e in \mathcal{E} , $|e \cap X|=1$.

Q(T):

 $x \in P_{\mathcal{B}(\mathcal{M})}$

$$\sum_{j:(i,j)\in E} p_j y_{ij} \ge T \cdot x_i \forall i \in X \quad \sum_{i:(i,j)\in E} y_{ij} \le 1 \forall j \in W \quad y_{ij} \le x_i \forall (i,j) \in E.$$

Main technical result: Suppose $Q(T) \neq \emptyset$. Then one can find (x,y) in $Q((\frac{1}{3}-\varepsilon)T - \frac{1}{3} \max p_w)$ with x and y integral in time $n^{\Theta_{\varepsilon}(1)}$.

Language change: *hyperedges* in a bipartite *hypergraph*.

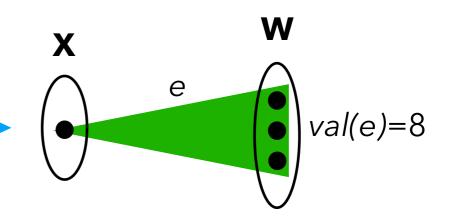
 \mathcal{E}_t : minimal bipartite hyperedges *e* with $val(e) \ge t$

W

val(e)= sum of values of resources in *e*

X

Hypergraph $H=(X \cup W, \mathcal{E})$ is bipartite if for all e in \mathcal{E} , $|e \cap X|=1$.



Set $\delta = max p_w/T$

To prove main technical result: find a basis S of \mathcal{M} and a hypergraph matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering S

 \mathcal{E}_t : bipartite hyperedges e with val(e)=t.

Set $\delta = max p_w/T$

To prove main technical result: find a basis S of \mathcal{M} and a hypergraph matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering S

 \mathcal{E}_t : bipartite hyperedges e with val(e)=t.

Our algorithm runs in rank(\mathcal{M}) phases.

Set $\delta = max p_w/T$

To prove main technical result: find a basis S of \mathcal{M} and a hypergraph matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering S

 \mathcal{E}_t : bipartite hyperedges e with val(e)=t.

Our algorithm runs in rank(\mathcal{M}) phases.

Start of phase: $S \in \mathcal{I}$, with $S \setminus i_0$ covered by hypermatching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$

Set $\delta = max p_w/T$

To prove main technical result: find a basis S of \mathcal{M} and a hypergraph matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering S

 \mathcal{E}_t : bipartite hyperedges e with val(e)=t.

Our algorithm runs in rank(\mathcal{M}) phases.

Start of phase: $S \in \mathcal{I}$, with $S \setminus i_0$ covered by hypermatching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$

During a phase: Build an *augmenting tree*. Swap sets of hyperedges in the tree to find more space.

 $\operatorname{Set} \delta = \max p_w / T$

To prove main technical result: find a basis S of \mathcal{M} and a hypergraph matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering S

 \mathcal{E}_t : bipartite hyperedges e with val(e)=t.

Our algorithm runs in rank(\mathcal{M}) phases.

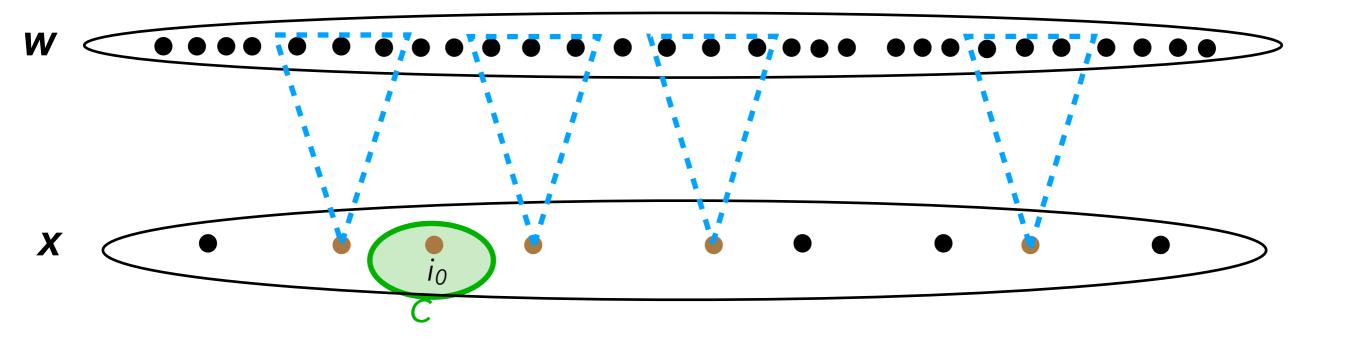
Start of phase: $S \in \mathcal{I}$, with $S \setminus i_0$ covered by hypermatching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$

During a phase: Build an *augmenting tree*. Swap sets of hyperedges in the tree to find more space.

End of a phase: Produce new hypermatching covering $S' \in \mathcal{I}$, where |S'| = |S|. Larger matching.

Proof: Augmenting tree

Input: $\mathbf{S} \in \mathcal{I}, i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering $\mathbf{S} \setminus i_0$, layer index ℓ . Discovered nodes $\mathbf{C} = \{i_0\}$, add edges $\mathbf{A} = \emptyset$, blocking edges $\mathbf{B} = \emptyset$, matching

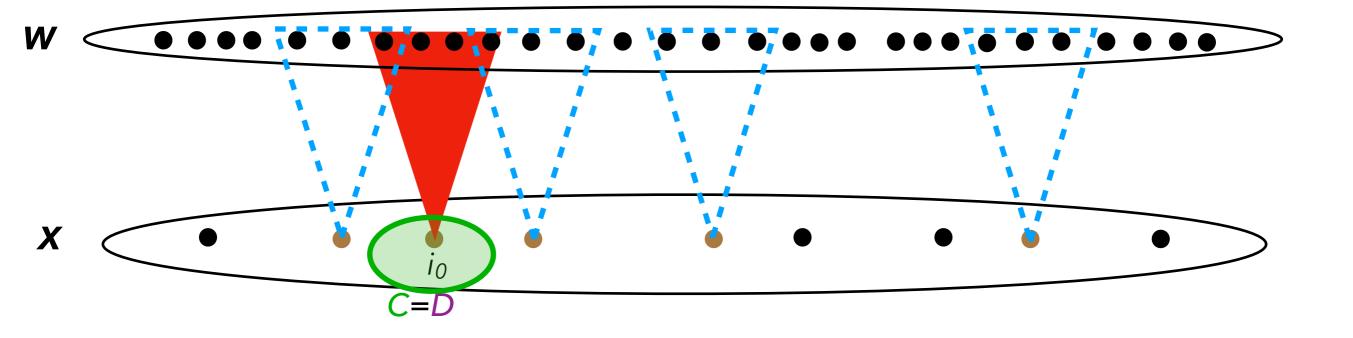


Proof: Augmenting tree

Input: $\mathbf{S} \in \mathcal{I}, i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering $\mathbf{S} \setminus i_0$, layer index ℓ . Discovered nodes $\mathbf{C} = \{i_0\}$, add edges $\mathbf{A} = \emptyset$, blocking edges $\mathbf{B} = \emptyset$, matching

Repeat until termination

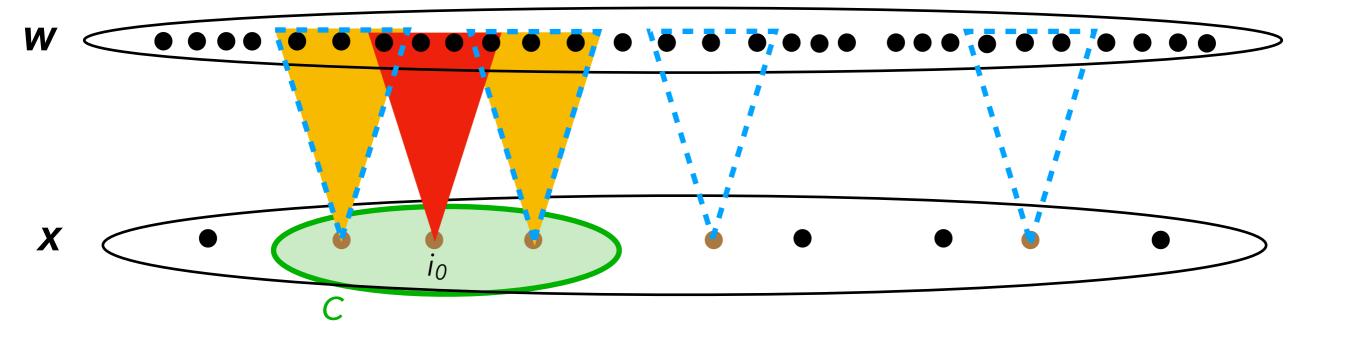
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3}-\frac{\delta}{3}-\frac{\varepsilon}{2})T}$ that are:
 - (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.



- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

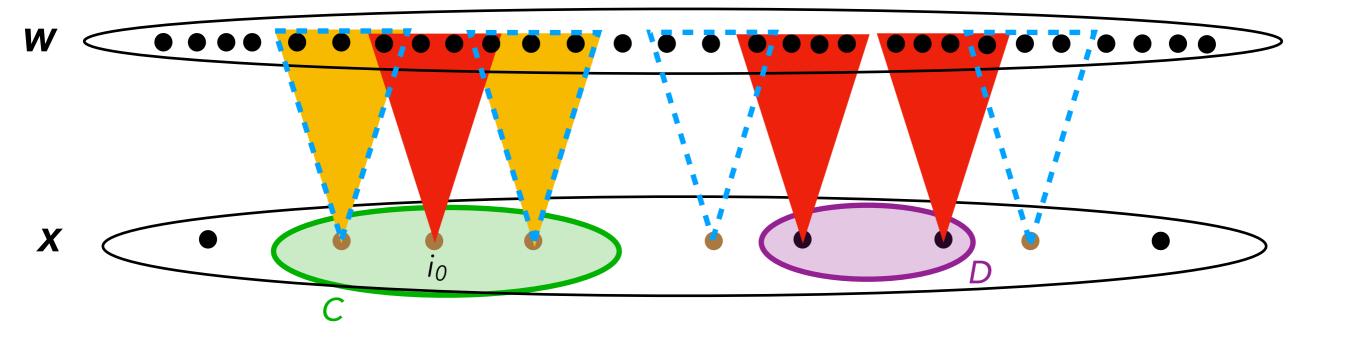
Add intersected matching edges to B, update A and C, and layer index $\ell+1$



- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3}-\frac{\delta}{3}-\frac{\varepsilon}{2})T}$ that are:
 - (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

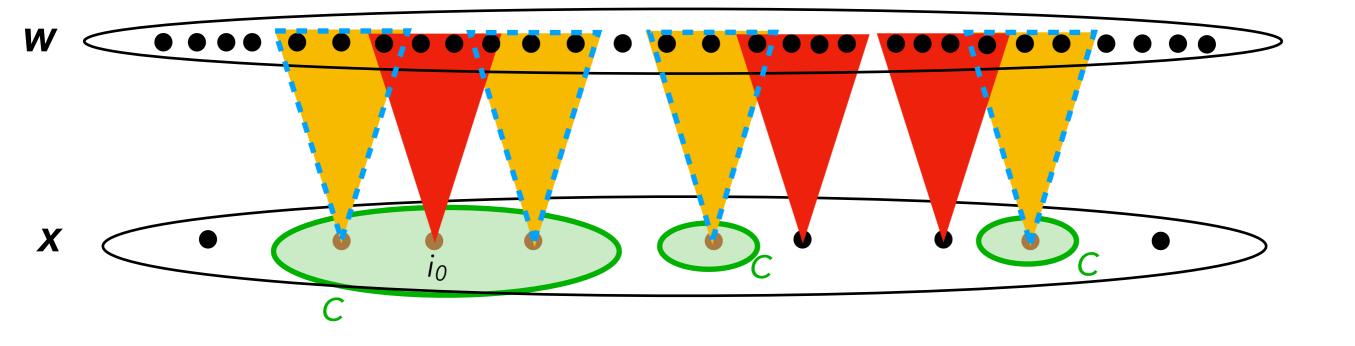
Add intersected matching edges to B, update A and C, and layer index $\ell+1$



- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to B, update A and C, and layer index $\ell+1$



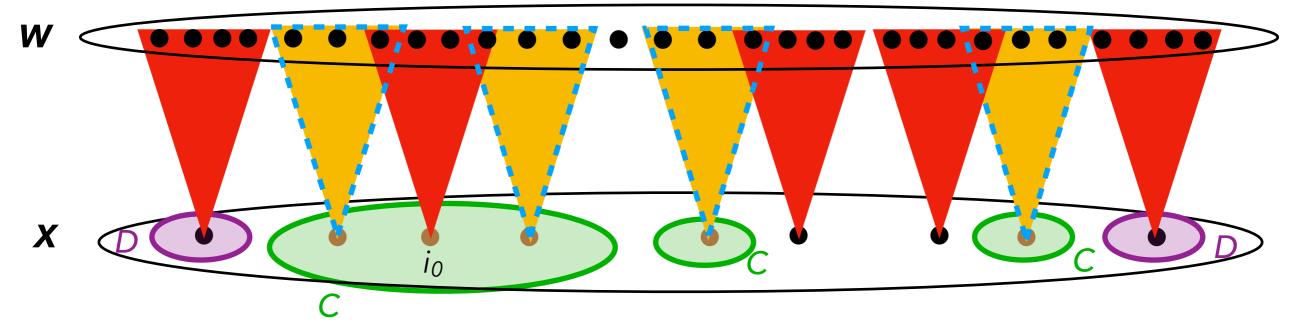
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
 - (a) Disjoint to resources in **A** and **B**, (b) cover $\mathbf{D} \subseteq X$, with $(S \setminus \mathbf{C}) \cup D$ in \mathcal{I} , (c) $|\mathbf{D}| \ge \Omega_{\varepsilon}(|\mathbf{C}|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to **B**, update **A** and **C**, and layer index $\ell+1$ 3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value

> $(1/3-\delta/3-\epsilon)$ T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , **END**.



Input: $S \in \mathcal{I}$, $i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ overing $S \setminus i_0$, layer index ℓ .

Discovered nodes $C = \{i_0\}$, add edges $A = \emptyset$, blocking edges $B = \emptyset$, matching Repeat until termination

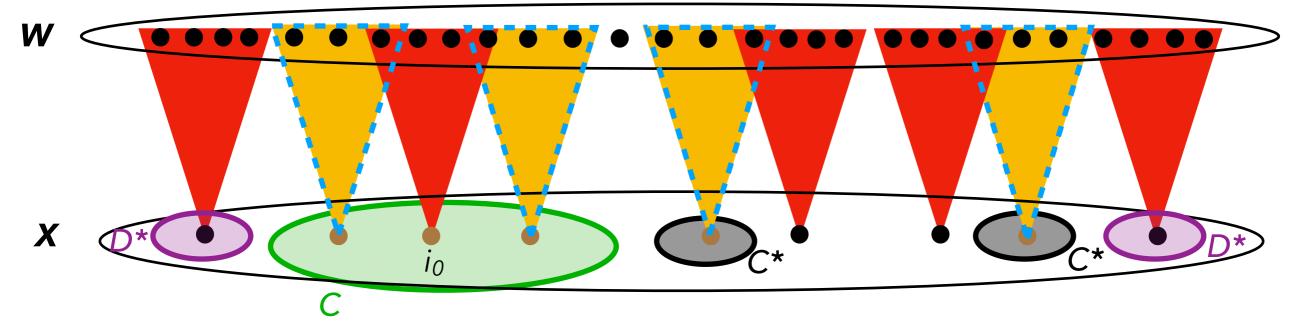
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to B, update A and C, and layer index $\ell+1$

3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value > (1/3-δ/3-ε)T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , **END**.



Input: $S \in \mathcal{I}, i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{2} - \frac{\delta}{2} - \varepsilon)T}$ covering $S \setminus i_0$, layer index ℓ .

Discovered nodes $C = \{i_0\}$, add edges $A = \emptyset$, blocking edges $B = \emptyset$, matching Repeat until termination

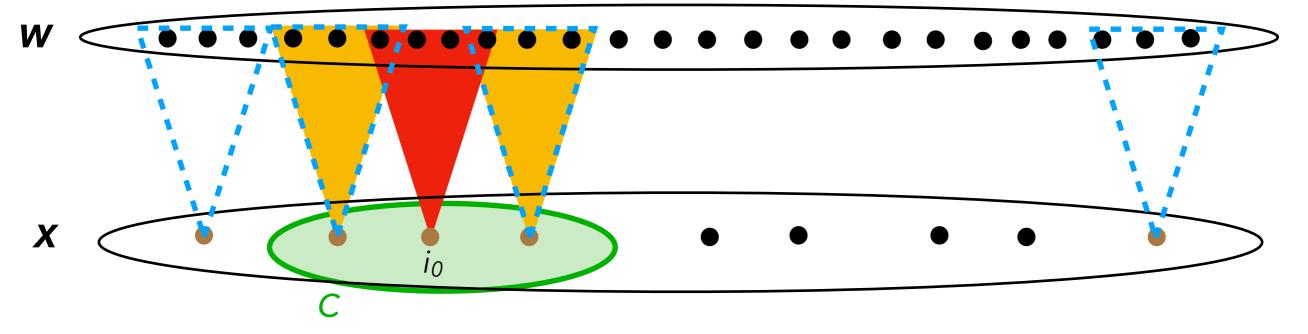
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to B, update A and C, and layer index $\ell+1$

3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value > (1/3-δ/3-ε)T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , **END**.



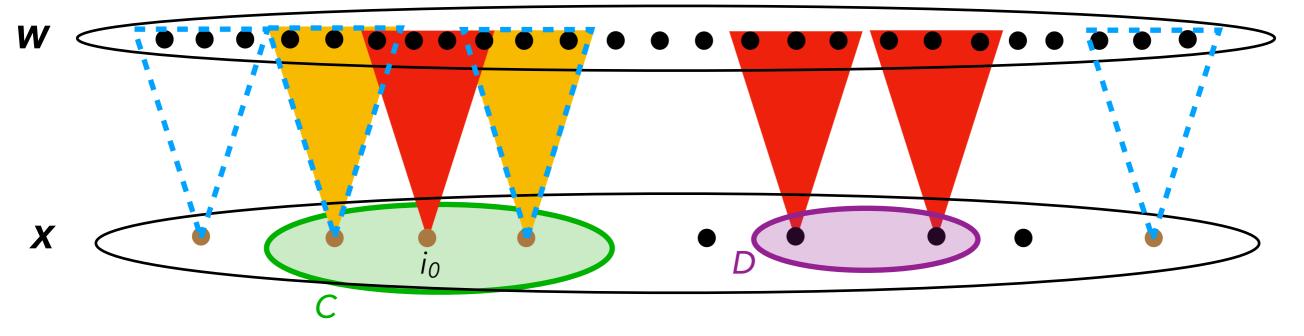
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3}-\frac{\delta}{3}-\frac{\varepsilon}{2})T}$ that are:
 - (a) Disjoint to resources in **A** and **B**, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to **B**, update **A** and **C**, and layer index $\ell+1$ 3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value

> $(1/3-\delta/3-\epsilon)$ T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , **END**.



Input: $S \in \mathcal{I}$, $i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{3} - \frac{\delta}{3} - \varepsilon)T}$ covering $S \setminus i_0$, layer index ℓ .

Discovered nodes $C = \{i_0\}$, add edges $A = \emptyset$, blocking edges $B = \emptyset$, matching Repeat until termination

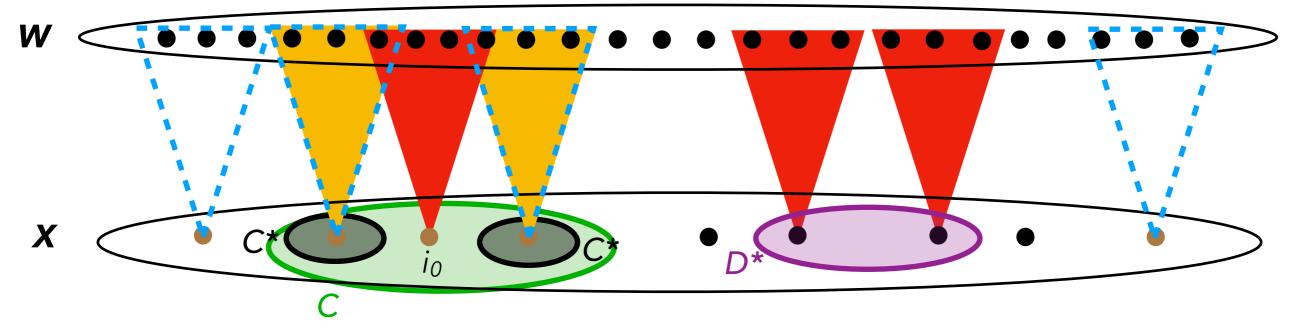
- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to B, update A and C, and layer index $\ell+1$

3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value > (1/3-δ/3-ε)T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , **END**.



Input: $S \in \mathcal{I}, i_0 \ni S$, matching $M \subseteq \mathcal{E}_{(\frac{1}{2} - \frac{\delta}{2} - \varepsilon)T}$ covering $S \setminus i_0$, layer index ℓ .

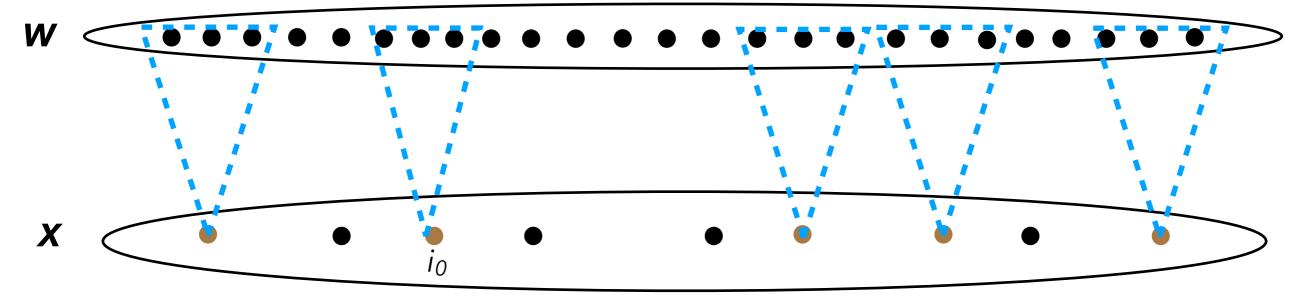
Discovered nodes $C = \{i_0\}$, add edges $A = \emptyset$, blocking edges $B = \emptyset$, matching Repeat until termination

- 1. Find candidate add edges in $\mathcal{E}_{(\frac{1}{3} \frac{\delta}{3} \frac{\varepsilon}{2})T}$ that are:
- (a) Disjoint to resources in A and B, (b) cover $D \subseteq X$, with $(S \setminus C) \cup D$ in \mathcal{I} , (c) $|D| \ge \Omega_{\varepsilon}(|C|)$.

2. If add edges intersect $\Omega_{\varepsilon}(|\mathbf{C}|)$ edges of matching:

Add intersected matching edges to **B**, update **A** and **C**, and layer index $\ell+1$ 3. **Otherwise** $\Omega_{\varepsilon}(|\mathbf{C}|)$ of add edges have resources summing to value > (1/3- $\delta/3-\varepsilon$)T free from matching and add edges:

If add edge covers i_1 with $S \cup \{i_1\}$ in \mathcal{I} , END.



Augmenting tree: termination

Augmenting tree: termination

Define *signature vector* to show algorithm terminates quickly:

 $s = \{s_1, s_2, \dots, s_{\ell}, \infty\}, \quad s_j = O(\log(\# \text{ blocking edges by layer j}))$

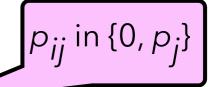
Augmenting tree: termination

Define *signature vector* to show algorithm terminates quickly:

 $s = \{s_1, s_2, \dots, s_\ell, \infty\}, \quad s_j = O(\log(\# \text{ blocking edges by layer j}))$

s decreases lexicographically after each iteration and # of signature vectors is polynomial in n = |X|+|W|.

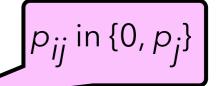
=> poly many iterations



Santa Claus (Restricted Max Min Fair Allocation)

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4



Arbitrary p_{ii}

Santa Claus (Restricted Max Min Fair Allocation)

Approximation factor between 2 and 4

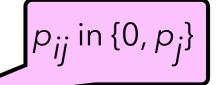
Integrality gap of our new LP between 2 and 4

Unrestricted Max Min Fair Allocation_

NP-hard to approximate within factor < 2 (like restricted)

O(log¹⁰n)-approximation in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]

CLP has root *n* gap



Arbitrary p_{ii}

Santa Claus (Restricted Max Min Fair Allocation)

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

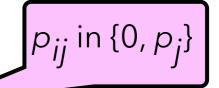
Unrestricted Max Min Fair Allocation

NP-hard to approximate within factor < 2 (like restricted)

O(log¹⁰n)-approximation in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]

CLP has root *n* gap

Other uses for Matroid Max-Min Fair Allocation?



Arbitrary p_{ii}

Santa Claus (Restricted Max Min Fair Allocation)

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

Unrestricted Max Min Fair Allocation_

NP-hard to approximate within factor < 2 (like restricted)

O(log¹⁰n)-approximation in quasi-polynomial time [Chakrabarty, Chuzhoy, Khanna '09]

CLP has root *n* gap

Other uses for Matroid Max-Min Fair Allocation?

Thanks