
A Tale of Santa Claus,
Hypergraphs and Matroids

Sami Davies, Thomas Rothvoss, Yihao Zhang

1

The Santa Claus problem (Restricted Max-Min Fair Allocation)

2

Limit values in
restricted

3

For W a set of gifts, X a set of children, where child i has value pij in

{0, pj} for gift j, find assignment σ : W → X maximizing min
i∈X

∑
j∈σ−1(i)

pij

The Santa Claus problem (Restricted Max-Min Fair Allocation)

Limit values in
restricted

X (kids)
W (gifts)

1

5

1

1

4

3

values

4

The Santa Claus problem (Restricted Max-Min Fair Allocation)

For W a set of gifts, X a set of children, where child i has value pij in

{0, pj} for gift j, find assignment σ : W → X maximizing min
i∈X

∑
j∈σ−1(i)

pij

Limit values in
restricted

X (kids)
W (gifts)

1

5

1

1

4

3

values

5

The Santa Claus problem (Restricted Max-Min Fair Allocation)

For W a set of gifts, X a set of children, where child i has value pij in

{0, pj} for gift j, find assignment σ : W → X maximizing min
i∈X

∑
j∈σ−1(i)

pij

Limit values in
restricted

X (kids)
W (gifts)

1

5

1

1

4

3

values

assign

W (gifts)
X (kids)

5

3

4

3

happiness

assign

6

“Dual” to classic jobs-machines scheduling

The Santa Claus problem (Restricted Max-Min Fair Allocation)

For W a set of gifts, X a set of children, where child i has value pij in

{0, pj} for gift j, find assignment σ : W → X maximizing min
i∈X

∑
j∈σ−1(i)

pij

Prior Work on Santa Claus

𝒞(i,T) = sets of gifts giving child i value
at least T. Exponentially many variables.

∑
C∈𝒞(i,T)

zi,C = 1 ∀i ∈ X

∑
C:j∈C

∑
i

zi,C ≤ 1 ∀j ∈ W

z ≥ 0.

[Bezakova, Dani ’05] NP-hard to
approximate Santa Claus within factor
<2

[Annamalai, Kalaitzis, Svensson ’15]
12.3-approx. algorithm use existence of
a solution of a configuration LP (CLP)

[Cheng, Mao ’19] CLP has integrality
gap between 2 and 3.808

7

^ sol’n can be approx using the
ellipsoid method

Hypergraph Matchings

Reframe allocation problems as bipartite
hypergraph matching problems

8

Hypergraph Matchings

A hypergraph ℋ =(X ⋃ W, ℰ) is bipartite if for all e in ℰ, |e ⋂ X|=1.

Hyperedges F ⊆ ℰ form a X-perfect matching if disjoint and every node in X
is contained in exactly one edge in F.

W

X

9

W

X

Perfect matching

Hypergraph Matchings

A hypergraph ℋ =(X ⋃ W, ℰ) is bipartite if for all e in ℰ, |e ⋂ X|=1.

Hyperedges F ⊆ ℰ form a X-perfect matching if disjoint and every node in X
is contained in exactly one edge in F.

10

Hypergraph Matchings

CLP solution = fractional X-perfect matching on . (X ∪ W, ∪i∈X 𝒞(i, T))

(LP) ∑
e∈𝒞(i,T)

ze = 1 ∀i ∈ X

∑
e ∈ ∪i∈X 𝒞(i, T)

:w∈e

ze ≤ 1 ∀w ∈ W

z ≥ 0.
Rewrite CLP in

hypergraph matching
notation

11

𝒞(i,T) = sets of gifts giving
child i value at least T

∑
C∈𝒞(i,T)

zi,C = 1 ∀i ∈ X

∑
C:j∈C

∑
i

zi,C ≤ 1 ∀j ∈ W

z ≥ 0.

Finding perfect matchings in bipartite hypergraphs is NP-hard.
 When do there exist perfect matchings?
 When, and how, can we find them efficiently?

Hypergraph Matchings

[Haxell ’95] Let ℋ =(X ⋃ W, ℰ) be a bipartite hypergraph with |e| ≤ r for all
e in ℰ. Then either ℋ contains a X-perfect matching or there are subsets X’
⊂ X and W’ ⊂ W so that all hyperedges incident to X’ intersect W’ and |W’|
≤ (2r − 3)(|X’| − 1).

[Annamalai ’15, Annamalai, Kalaitzis, Svensson ’15] Use augmenting
tree to make Haxell’s argument polynomial (with some slack) and obtain
12.3 approx. for Santa Claus.

[Davies, Rothvoss, Zhang ’18] When X forms a matroid, use augmenting
tree to find hypergraph matching on some basis of the matroid.

12

Generalization of augmenting
paths in bipartite graphs

Say restricting instance to have extra
structure.

Our Main Result for Santa Claus

13

Our Main Result for Santa Claus

The Santa Claus problem admits a (4+ε)-
approximation algorithm in time . nΘε(1)

14

When gift values are “well-separated”, can approach a 3-approx

Our Main Result for Santa Claus
Contribution

15

We exploit an underlying matroid to design a
simple, new framework for scheduling problems.

- Introduce a more general problem, Matroid Max-Min Allocation

- Use an LP with O(n2) variables and constraints (simpler than CLP)

- Best approximation for Santa Claus (concurrent with Cheng, Mao ’19)

16

Matroids

17

MatroidsX = ground set, I ⇢ 2X

Matroid generalizes linear independence in vector spaces

Independent sets satisfy:

• Nonemptyness: ∅ in

• Monotonicity: for all A’ ⊆ A with A in , A’ in

• Exchange property: for A, B in with |A| < |B|, there exists x in
B\ A such that A ⋃ x in

Bases of a matroid: , set of maximal independent sets

Base polytope:

I

B(M)

I
I

I
I

PB(M) = conv{�(S) 2 {0, 1}X : S is a basis of M}

M = (X, I)

I

Matroid Max-Min Allocation

18

Matroid Max-Min Allocation

19

Reduce to a general problem we call Matroid Max-Min Allocation

Matroid Max-Min Allocation

Setting matroid , bipartite graph ,
resources W to distribute to X, values pj ≥ 0 for resource j in W

Goal find basis and assignment σ : W → S with (σ(i),j)
in E maximizing over all S

G = (X ∪ W, E)M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)

20

Reduce to a general problem we call Matroid Max-Min Allocation

Matroid Max-Min Allocation

21

Reduce to a general problem we call Matroid Max-Min Allocation

(0,1,0)

(0,0,1)

(1,0,0)

X W

(1,1,0)

(1,0,1) Unit size
resources}

Setting matroid , bipartite graph ,
resources W to distribute to X, values pj ≥ 0 for resource j in W

Goal find basis and assignment σ : W → S with (σ(i),j)
in E maximizing over all S

M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)

G = (X ∪ W, E)

Matroid Max-Min Allocation

22

Reduce to a general problem we call Matroid Max-Min Allocation

(1,0,0)

(0,1,0)

(0,0,1)

WX

Setting matroid , bipartite graph ,
resources W to distribute to X, values pj ≥ 0 for resource j in W

Goal find basis and assignment σ : W → S with (σ(i),j)
in E maximizing over all S

M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)

G = (X ∪ W, E)

(0,1,0)

(0,0,1)

(1,0,0)

X W

(1,1,0)

(1,0,1) Unit size
resources}

Matroid Max-Min Allocation

23

For target objective value T ≥ 0, the LP Q(T) is the set of vectors
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation

24

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

For target objective value T ≥ 0, the LP Q(T) is the set of vectors
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation

25

Elements in basis are “well-covered”

Resources not over assigned
Expansion condition

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

For target objective value T ≥ 0, the LP Q(T) is the set of vectors
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation

26

Elements in basis are “well-covered”

Resources not over assigned
Expansion condition

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

n= |X|+|W|

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in
Q((⅓-ε)T -⅓ max pj) with x and y integral in time nΘε(1) .

Santa Claus and Matroid Max-Min Allocation

Fix 𝛿 > 0. Label gift j large if pj > 𝛿T, small if pj ≤ 𝛿T

Let = {A ⊆ children s.t ∃ matching between A and large gifts}.
(children,) forms a matchable set matroid, .

* = (children, *) is the co-matroid for * = {A ⊆ children s.t ∃ B
in with A ⋂ B = ∅ }

Bases of co-matroid are sets of children receiving only small gifts

I
I M

M I I
B(M)

27

Gifts

Children

 pj > 𝛿Tpj ≤ 𝛿T

Santa Claus and Matroid Max-Min Allocation

28

29

T = opt value. Relaxation P(T, 𝛿)- vectors satisfying:z ∈ ℝM×J

JS, JL: small, large gifts
zij : does kid i get gift j
Aj: kids who want gift j

Santa Claus and Matroid Max-Min Allocation

30

Expansion condition-
kids with large gift
get no small gifts

T = opt value. Relaxation P(T, 𝛿)- vectors satisfying:z ∈ ℝM×J

∑
j∈JS:i∈Aj

pjzij ≥ T ⋅ (1 − ∑
j∈JL:i∈Aj

zij) ∀i ∈ X

∑
i∈Aj

zij ≤ 1 ∀j ∈ W

zij ≤ 1 − ∑
j′�∈JL:i∈Aj′�

zij′� ∀j ∈ JS ∀i ∈ Aj .

No gift over assigned

Santa Claus and Matroid Max-Min Allocation

JS, JL: small, large gifts
zij : does kid i get gift j
Aj: kids who want gift j

Kids with no large
gifts “well-covered”

31

There exists (x*,y*)
in Q(T) (w.r.t.)

Instance of SC
with objective

value T

There exists z in
P(T, 𝛿) M⇤

Santa Claus and Matroid Max-Min Allocation

T = opt value. Relaxation P(T, 𝛿)- vectors satisfying:z ∈ ℝM×J

∑
j∈JS:i∈Aj

pjzij ≥ T ⋅ (1 − ∑
j∈JL:i∈Aj

zij) ∀i ∈ X

∑
i∈Aj

zij ≤ 1 ∀j ∈ W

zij ≤ 1 − ∑
j′�∈JL:i∈Aj′�

zij′� ∀j ∈ JS ∀i ∈ Aj .JS, JL: small, large gifts
zij : does kid i get gift j
Aj: kids who want gift j

No gift over assigned

Kids with no large
gifts “well-covered”

Expansion condition-
kids with large gift
get no small gifts

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y)
in Q((⅓-ε)T -⅓ max pw) with x and y integral in poly time

From main technical result: Find children receiving only small
gifts and their gift assignments: their happiness ≥ (⅓-𝛿/3-ε)T

Remaining children receive a large gift: their happiness ≥ 𝛿T

Children receive happiness ≥ set 𝛿 = 1/4:min {(1
3

− δ/3 − ε) T, δT},

The Santa Claus problem admits a (4+ε)-
approximation algorithm in time . nΘε(1)

Santa Claus and Matroid Max-Min Allocation

32

There exists (x*,y*)
in Q(T) (w.r.t.)

Instance of SC
with objective

value T

There exists z in
P(T, 𝛿) M⇤

Main Technical Result

33

Main Technical Result

34

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in
Q((⅓-ε)T -⅓ max pw) with x and y integral in time nΘε(1) .

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

Q(T):

Language change: hyperedges in a bipartite hypergraph

Main Technical Result

35

Hypergraph H=(X ⋃ W,) is bipartite
if for all e in , |e ⋂ X|=1.E

E

Et : minimal bipartite hyperedges e with
 val(e) ≥ t

val(e)= sum of values of resources in e

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

Q(T):

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in
Q((⅓-ε)T -⅓ max pw) with x and y integral in time nΘε(1) .

Main Technical Result

36

X W X W
 p1 = 1
 p2 = 3
 p3 = 4

val(e)=8
e

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij 18j 2 W yij xi8(i, j) 2 E.

Q(T):

Language change: hyperedges in a bipartite hypergraph.
Et : minimal bipartite hyperedges e with
 val(e) ≥ t Hypergraph H=(X ⋃ W,) is bipartite

if for all e in , |e ⋂ X|=1.E
E

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in
Q((⅓-ε)T -⅓ max pw) with x and y integral in time nΘε(1) .

val(e)= sum of values of resources in e

37

Main Technical Result

38

To prove main technical result: find a basis S of and a
hypergraph matching M ⊆ covering S E(1

3�
�
3�")T

M

 : bipartite hyperedges e
with val(e)=t.

Et

Main Technical Result
Set δ = max pw/T

39

Our algorithm runs in rank() phases.M

Main Technical Result
Set δ = max pw/T

To prove main technical result: find a basis S of and a
hypergraph matching M ⊆ covering S E(1

3�
�
3�")T

M

 : bipartite hyperedges e
with val(e)=t.

Et

40

Our algorithm runs in rank() phases.M

Main Technical Result

Start of phase: S ∈ , with S \ i0 covered by hypermatching M ⊆ .I E(1
3�

�
3�")T

Set δ = max pw/T

To prove main technical result: find a basis S of and a
hypergraph matching M ⊆ covering S E(1

3�
�
3�")T

M

 : bipartite hyperedges e
with val(e)=t.

Et

41

Our algorithm runs in rank() phases.M

Main Technical Result

During a phase: Build an augmenting tree. Swap sets of hyperedges in the
tree to find more space.

Set δ = max pw/T

Start of phase: S ∈ , with S \ i0 covered by hypermatching M ⊆ .I E(1
3�

�
3�")T

To prove main technical result: find a basis S of and a
hypergraph matching M ⊆ covering S E(1

3�
�
3�")T

M

 : bipartite hyperedges e
with val(e)=t.

Et

End of a phase: Produce new hypermatching covering S’∈ , where |S’|=|S|.
Larger matching.

42

Our algorithm runs in rank() phases.M

Main Technical Result

During a phase: Build an augmenting tree. Swap sets of hyperedges in the
tree to find more space.

I

Set δ = max pw/T

Start of phase: S ∈ , with S \ i0 covered by hypermatching M ⊆ .I E(1
3�

�
3�")T

To prove main technical result: find a basis S of and a
hypergraph matching M ⊆ covering S E(1

3�
�
3�")T

M

 : bipartite hyperedges e
with val(e)=t.

Et

Proof: Augmenting tree
Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁.

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching
E(1

3�
�
3�")TI

i0

W

X

C

Proof: Augmenting tree
Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁.

Repeat until termination

E(1
3�

�
3�")TI

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in

, (c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

i0

W

X

C=D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

i0

W

X

C

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

i0

W

X

C
D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

i0
X

C
C C

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

W

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

i0

W

X

C
C C DD

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1
3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

i0

W

X

C
C* C* D*D*

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

i0

W

X

C

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

i0

W

X

C

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

i0

W

X

C

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1

D*C*C*

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

i0

W

X

Input: S ∈ , i0 ∋ S, matching M ⊆ covering S \ i0, layer index 𝓁. E(1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching:
Add intersected matching edges to B, update A and C, and layer index 𝓁+1
3. Otherwise Ωε(|C|) of add edges have resources summing to value
> (1/3-𝛿/3-ε)T free from matching and add edges:
If add edge covers i1 with S ⋃ {i1} in , END.
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching

1. Find candidate add edges in that are:
(a) Disjoint to resources in A and B, (b) cover D ⊆ X, with (S \ C)⋃D in ,

(c) |D| ≥ Ωε(|C|).

E(1
3�

�
3�

"
2)T

I

Augmenting tree: termination

54

Augmenting tree: termination
Define signature vector to show algorithm terminates quickly:
s = {s1, s2, ⋯, sℓ, ∞}, sj = O(log(# blocking edges by layer j))

55

Augmenting tree: termination

s = {s1, s2, ⋯, sℓ, ∞}, sj = O(log(# blocking edges by layer j))

s decreases lexicographically after each iteration and # of
signature vectors is polynomial in n = |X|+|W|.

=> poly many iterations

56

Define signature vector to show algorithm terminates quickly:

57

Open Problems

58

Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

pij in {0, pj}

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

59

Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

Unrestricted Max Min Fair Allocation
NP-hard to approximate within factor < 2 (like restricted)

O(log10n)-approximation in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

Arbitrary pij

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

pij in {0, pj}

CLP has root n gap

60

Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

Unrestricted Max Min Fair Allocation
NP-hard to approximate within factor < 2 (like restricted)

O(log10n)-approximation in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

Arbitrary pij

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

pij in {0, pj}

CLP has root n gap

Other uses for Matroid Max-Min Fair Allocation?

61

Thanks!

Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

Unrestricted Max Min Fair Allocation
NP-hard to approximate within factor < 2 (like restricted)

O(log10n)-approximation in quasi-polynomial time
[Chakrabarty, Chuzhoy, Khanna ’09]

Arbitrary pij

Approximation factor between 2 and 4

Integrality gap of our new LP between 2 and 4

pij in {0, pj}

CLP has root n gap

Other uses for Matroid Max-Min Fair Allocation?

