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The Santa Claus problem (Restricted Max-Min Fair Allocation)
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Limit values in 
restricted 
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For W a set of gifts, X a set of children, where child i has value pij in 

{0, pj} for gift j, find assignment σ : W → X maximizing   min
i∈X

∑
j∈σ−1(i)

pij
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“Dual” to classic jobs-machines scheduling

The Santa Claus problem (Restricted Max-Min Fair Allocation)

For W a set of gifts, X a set of children, where child i has value pij in 

{0, pj} for gift j, find assignment σ : W → X maximizing   min
i∈X

∑
j∈σ−1(i)

pij



Prior Work on Santa Claus

𝒞(i,T) = sets of gifts giving child i value 
at least T. Exponentially many variables.

∑
C∈𝒞(i,T )

zi,C = 1 ∀i ∈ X

∑
C:j∈C

∑
i

zi,C ≤ 1 ∀j ∈ W

z ≥ 0.

[Bezakova, Dani ’05] NP-hard to 
approximate Santa Claus within factor 
<2 

[Annamalai, Kalaitzis, Svensson ’15] 
12.3-approx. algorithm use existence of 
a solution of a configuration LP (CLP) 

[Cheng, Mao ’19] CLP has integrality 
gap between 2 and 3.808
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^ sol’n can be approx using the 
ellipsoid method



Hypergraph Matchings

Reframe allocation problems as bipartite 
hypergraph matching problems
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Hypergraph Matchings

A hypergraph ℋ =(X ⋃ W, ℰ) is bipartite if for all e in ℰ, |e ⋂ X|=1.  

Hyperedges F ⊆ ℰ form a X-perfect matching if disjoint and every node in X 
is contained in exactly one edge in F. 

W

X
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W

X

Perfect matching

Hypergraph Matchings

A hypergraph ℋ =(X ⋃ W, ℰ) is bipartite if for all e in ℰ, |e ⋂ X|=1.  

Hyperedges F ⊆ ℰ form a X-perfect matching if disjoint and every node in X 
is contained in exactly one edge in F. 
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Hypergraph Matchings

CLP solution = fractional X-perfect matching on . (X ∪ W, ∪i∈X 𝒞(i, T ))

(LP) ∑
e∈𝒞(i,T )

ze = 1 ∀i ∈ X

∑
e ∈ ∪i∈X 𝒞(i, T )

:w∈e

ze ≤ 1 ∀w ∈ W

z ≥ 0.
Rewrite CLP in 

hypergraph matching 
notation

11

𝒞(i,T) = sets of gifts giving 
child i value at least T

∑
C∈𝒞(i,T )

zi,C = 1 ∀i ∈ X

∑
C:j∈C

∑
i

zi,C ≤ 1 ∀j ∈ W

z ≥ 0.



Finding perfect matchings in bipartite hypergraphs is NP-hard. 
    When do there exist perfect matchings? 
    When, and how, can we find them efficiently?

Hypergraph Matchings

[Haxell ’95] Let ℋ =(X ⋃ W, ℰ) be a bipartite hypergraph with |e| ≤ r for all 
e in ℰ. Then either ℋ contains a X-perfect matching or there are subsets X’ 
⊂ X and W’ ⊂ W so that all hyperedges incident to X’ intersect W’ and   |W’| 
≤ (2r − 3)(|X’| − 1).  

[Annamalai ’15, Annamalai, Kalaitzis, Svensson ’15] Use augmenting 
tree to make Haxell’s argument polynomial (with some slack) and obtain 
12.3 approx. for Santa Claus. 

[Davies, Rothvoss, Zhang ’18] When X forms a matroid, use augmenting 
tree to find hypergraph matching on some basis of the matroid.

12

Generalization of augmenting 
paths in bipartite graphs

Say restricting instance to have extra 
structure.




Our Main Result for Santa Claus
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Our Main Result for Santa Claus

The Santa Claus problem admits a (4+ε)-
approximation algorithm in time        .                       nΘε(1)
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When gift values are “well-separated”, can approach a 3-approx 



Our Main Result for Santa Claus
Contribution
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We exploit an underlying matroid to design a 
simple, new framework for scheduling problems.

- Introduce a more general problem, Matroid Max-Min Allocation   

- Use an LP with O(n2) variables and constraints (simpler than CLP) 

- Best approximation for Santa Claus (concurrent with Cheng, Mao ’19)
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Matroids
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MatroidsX = ground set,              I ⇢ 2X

Matroid                    generalizes linear independence in vector spaces 

Independent sets  satisfy:  

• Nonemptyness: ∅ in     

• Monotonicity: for all A’ ⊆ A with A in    , A’ in    

• Exchange property: for A, B in    with |A| < |B|, there exists x in 
B\ A such that A ⋃ x in  

Bases of a matroid:  , set of maximal independent sets 

Base polytope: 

I

B(M)

I
I

I
I

PB(M) = conv{�(S) 2 {0, 1}X : S is a basis of M}

M = (X, I)

I



Matroid Max-Min Allocation
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Matroid Max-Min Allocation
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Reduce to a general problem we call Matroid Max-Min Allocation



Matroid Max-Min Allocation

Setting matroid                     , bipartite graph                           , 
resources W to distribute to X, values pj ≥ 0 for resource j in W 

Goal find basis                   and assignment σ : W → S with (σ(i),j) 
in E maximizing over all S

G = (X ∪ W, E)M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)
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Reduce to a general problem we call Matroid Max-Min Allocation



Matroid Max-Min Allocation
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Reduce to a general problem we call Matroid Max-Min Allocation

(0,1,0)

(0,0,1)

(1,0,0)

X W

(1,1,0)

(1,0,1) Unit size 
resources}

Setting matroid                     , bipartite graph                           , 
resources W to distribute to X, values pj ≥ 0 for resource j in W 

Goal find basis                   and assignment σ : W → S with (σ(i),j) 
in E maximizing over all S

M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)

G = (X ∪ W, E)



Matroid Max-Min Allocation
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Reduce to a general problem we call Matroid Max-Min Allocation

(1,0,0)

(0,1,0)

(0,0,1)

WX

Setting matroid                     , bipartite graph                       , 
resources W to distribute to X, values pj ≥ 0 for resource j in W 

Goal find basis                   and assignment σ : W → S with (σ(i),j) 
in E maximizing over all S

M = (X, I)

min
i∈S

∑
j∈σ−1(i)

pj

S 2 B(M)

G = (X ∪ W, E)

(0,1,0)

(0,0,1)

(1,0,0)

X W

(1,1,0)

(1,0,1) Unit size 
resources}



Matroid Max-Min Allocation
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For target objective value T ≥ 0, the LP Q(T) is the set of vectors                            
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation
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x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.



For target objective value T ≥ 0, the LP Q(T) is the set of vectors                            
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation
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Elements in basis are “well-covered”

Resources not over assigned
Expansion condition

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.



For target objective value T ≥ 0, the LP Q(T) is the set of vectors                            
satisfying: (x, y) ∈ ℝX

≥0 × ℝE
≥0

Matroid Max-Min Allocation
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Elements in basis are “well-covered”

Resources not over assigned
Expansion condition

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.

n= |X|+|W|

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in 
Q((⅓-ε)T -⅓  max pj ) with x and y integral in time nΘε(1) .



Santa Claus and Matroid Max-Min Allocation

Fix 𝛿 > 0. Label gift j large if pj > 𝛿T, small if pj ≤ 𝛿T   

Let   = {A  ⊆ children s.t ∃ matching between A and large gifts}. 
(children, ) forms a matchable set matroid, . 

* = (children, *) is the co-matroid for * = {A ⊆ children s.t ∃ B 
in   with A ⋂ B = ∅ } 

Bases of co-matroid are sets of children receiving only small gifts

I
I M

M I I
B(M)
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Gifts

Children

 pj > 𝛿Tpj ≤ 𝛿T



Santa Claus and Matroid Max-Min Allocation
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T = opt value. Relaxation P(T, 𝛿)- vectors                 satisfying:z ∈ ℝM×J

JS, JL: small, large gifts 
zij : does kid i get gift j 
Aj: kids who want gift j 

Santa Claus and Matroid Max-Min Allocation
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Expansion condition- 
kids with large gift 
get no small gifts

T = opt value. Relaxation P(T, 𝛿)- vectors                 satisfying:z ∈ ℝM×J

∑
j∈JS:i∈Aj

pjzij ≥ T ⋅ (1 − ∑
j∈JL:i∈Aj

zij) ∀i ∈ X

∑
i∈Aj

zij ≤ 1 ∀j ∈ W

zij ≤ 1 − ∑
j′�∈JL:i∈Aj′�

zij′� ∀j ∈ JS ∀i ∈ Aj .

No gift over assigned

Santa Claus and Matroid Max-Min Allocation

JS, JL: small, large gifts 
zij : does kid i get gift j 
Aj: kids who want gift j 

Kids with no large 
gifts “well-covered” 
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There exists (x*,y*) 
in Q(T) (w.r.t.       ) 

Instance of SC 
with objective 

value T

There exists z in 
P(T, 𝛿) M⇤

Santa Claus and Matroid Max-Min Allocation

T = opt value. Relaxation P(T, 𝛿)- vectors                 satisfying:z ∈ ℝM×J

∑
j∈JS:i∈Aj

pjzij ≥ T ⋅ (1 − ∑
j∈JL:i∈Aj

zij) ∀i ∈ X

∑
i∈Aj

zij ≤ 1 ∀j ∈ W

zij ≤ 1 − ∑
j′�∈JL:i∈Aj′�

zij′� ∀j ∈ JS ∀i ∈ Aj .JS, JL: small, large gifts 
zij : does kid i get gift j 
Aj: kids who want gift j 

No gift over assigned

Kids with no large 
gifts “well-covered” 

Expansion condition- 
kids with large gift 
get no small gifts



Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) 
in Q((⅓-ε)T -⅓  max pw) with x and y integral in poly time 

From main technical result: Find children receiving only small 
gifts and their gift assignments: their happiness ≥ (⅓-𝛿/3-ε)T 

Remaining children receive a large gift: their happiness ≥ 𝛿T 

Children receive happiness ≥                                         set 𝛿 = 1/4:min {( 1
3

− δ/3 − ε) T, δT},

The Santa Claus problem admits a (4+ε)-
approximation algorithm in time         .                       nΘε(1)

Santa Claus and Matroid Max-Min Allocation
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There exists (x*,y*) 
in Q(T) (w.r.t.       ) 

Instance of SC 
with objective 

value T

There exists z in 
P(T, 𝛿) M⇤



Main Technical Result
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Main Technical Result
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Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in  
Q((⅓-ε)T -⅓  max pw) with x and y integral in time nΘε(1) .

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.

Q(T):



Language change: hyperedges in a bipartite hypergraph 

Main Technical Result
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Hypergraph H=(X ⋃ W,   ) is bipartite 
if for all e in   , |e ⋂ X|=1.E

E

Et  : minimal bipartite hyperedges e with 
 val(e) ≥ t

val(e)= sum of values of resources in e

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.

Q(T):

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in  
Q((⅓-ε)T -⅓  max pw) with x and y integral in time nΘε(1) .



Main Technical Result
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X W X W
 p1 = 1
 p2 = 3
 p3 = 4

val(e)=8
e

x 2 PB(M)

X

j:(i,j)2E

pjyij � T · xi8i 2 X
X

i:(i,j)2E

yij  18j 2 W yij  xi8(i, j) 2 E.

Q(T):

Language change: hyperedges in a bipartite hypergraph. 
Et  : minimal bipartite hyperedges e with 
 val(e) ≥ t Hypergraph H=(X ⋃ W,   ) is bipartite 

if for all e in   , |e ⋂ X|=1.E
E

Main technical result: Suppose Q(T) ≠ ∅. Then one can find (x,y) in  
Q((⅓-ε)T -⅓  max pw) with x and y integral in time nΘε(1) .

val(e)= sum of values of resources in e
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Main Technical Result
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To prove main technical result: find a basis S of      and a 
hypergraph matching M ⊆                   covering S E( 1

3�
�
3�")T

M

  : bipartite hyperedges e 
with val(e)=t. 

Et

Main Technical Result
Set δ = max pw/T
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Our algorithm runs in rank(     ) phases.M

Main Technical Result
Set δ = max pw/T

To prove main technical result: find a basis S of      and a 
hypergraph matching M ⊆                   covering S E( 1

3�
�
3�")T

M

  : bipartite hyperedges e 
with val(e)=t. 

Et
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Our algorithm runs in rank(     ) phases.M

Main Technical Result

Start of phase: S ∈   , with S \ i0  covered by  hypermatching M ⊆                 .I E( 1
3�

�
3�")T

Set δ = max pw/T

To prove main technical result: find a basis S of      and a 
hypergraph matching M ⊆                   covering S E( 1

3�
�
3�")T

M

  : bipartite hyperedges e 
with val(e)=t. 

Et
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Our algorithm runs in rank(     ) phases.M

Main Technical Result

During a phase: Build an augmenting tree. Swap sets of hyperedges in the 
tree to find more space. 

Set δ = max pw/T

Start of phase: S ∈   , with S \ i0  covered by  hypermatching M ⊆                 .I E( 1
3�

�
3�")T

To prove main technical result: find a basis S of      and a 
hypergraph matching M ⊆                   covering S E( 1

3�
�
3�")T

M

  : bipartite hyperedges e 
with val(e)=t. 

Et



End of a phase: Produce new hypermatching covering S’∈   , where |S’|=|S|. 
Larger matching.
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Our algorithm runs in rank(     ) phases.M

Main Technical Result

During a phase: Build an augmenting tree. Swap sets of hyperedges in the 
tree to find more space. 

I

Set δ = max pw/T

Start of phase: S ∈   , with S \ i0  covered by  hypermatching M ⊆                 .I E( 1
3�

�
3�")T

To prove main technical result: find a basis S of      and a 
hypergraph matching M ⊆                   covering S E( 1

3�
�
3�")T

M

  : bipartite hyperedges e 
with val(e)=t. 

Et



Proof: Augmenting tree
Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. 

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 
E( 1

3�
�
3�")TI

i0

W

X

C



Proof: Augmenting tree
Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. 

Repeat until termination

E( 1
3�

�
3�")TI

1. Find candidate add edges in                   that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   

, (c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I

i0

W

X

C=D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 



Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

i0

W

X

C

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I



Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

i0

W

X

C
D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I



i0
X

C
C C

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

W

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I



i0

W

X

C
C C DD

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 
3. Otherwise Ωε(|C|) of add edges have resources summing to value  
> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I



i0

W

X

C
C* C* D*D*

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value  
> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I



i0

W

X

C

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value  
> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C

I



i0

W

X

C

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

D

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 

E( 1
3�

�
3�

"
2 )T

I

3. Otherwise Ωε(|C|) of add edges have resources summing to value  
> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C
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i0

W

X

C

Input: S ∈    , i0 ∋ S, matching M ⊆                   covering S \ i0, layer index 𝓁. E( 1
3�

�
3�")TI

Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 

D*C*C*

Discovered nodes C = {i0}, add edges A = ∅, blocking edges B=∅, matching 

1. Find candidate add edges in                    that are: 
(a) Disjoint to resources in A and B, (b)  cover D ⊆ X, with (S \ C)⋃D in   , 

(c) |D| ≥ Ωε(|C|). 
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3. Otherwise Ωε(|C|) of add edges have resources summing to value  
> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C
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Repeat until termination

2. If add edges intersect Ωε(|C|) edges of matching: 
Add intersected matching edges to B, update A and C, and layer index 𝓁+1 
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> (1/3-𝛿/3-ε)T free from matching and add edges: 
If add edge covers i1 with S ⋃ {i1} in    , END. 
Swap C* from layer 𝓁* in matching. Update S= S\C* ⋃ D*, 𝓁=𝓁*, B, A, C
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Augmenting tree: termination
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Augmenting tree: termination
Define signature vector to show algorithm terminates quickly:  
s = {s1, s2, ⋯, sℓ, ∞}, sj = O(log(# blocking edges by layer j))

55



Augmenting tree: termination

s = {s1, s2, ⋯, sℓ, ∞}, sj = O(log(# blocking edges by layer j))

s decreases lexicographically after each iteration and # of 
signature vectors is polynomial in n = |X|+|W|. 

=> poly many iterations
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Define signature vector to show algorithm terminates quickly:  
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Open Problems
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Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

pij in {0, pj}

Approximation factor between 2 and 4 

Integrality gap of our new LP between 2 and 4
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Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

Unrestricted Max Min Fair Allocation 
NP-hard to approximate within factor < 2 (like restricted) 

O(log10n)-approximation in quasi-polynomial time 
[Chakrabarty, Chuzhoy, Khanna ’09]

Arbitrary pij

Approximation factor between 2 and 4 

Integrality gap of our new LP between 2 and 4

pij in {0, pj}

CLP has root n gap
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CLP has root n gap

Other uses for Matroid Max-Min Fair Allocation?
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Open Problems

Santa Claus (Restricted Max Min Fair Allocation)

Unrestricted Max Min Fair Allocation 
NP-hard to approximate within factor < 2 (like restricted) 

O(log10n)-approximation in quasi-polynomial time 
[Chakrabarty, Chuzhoy, Khanna ’09]

Arbitrary pij

Approximation factor between 2 and 4 

Integrality gap of our new LP between 2 and 4

pij in {0, pj}

CLP has root n gap

Other uses for Matroid Max-Min Fair Allocation?


